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Executive Summary

An effective and robust interface element technology able to connect independently
modeled finite element subdomains has been developed. This method is based on the use of
penalty constraints and allows coupling of finite element models whose nodes do not coincide
along their common interface. Additionally, the present formulation leads to a computational
approach that is very efficient and completely compatible with existing commercial software. A
significant effort has been directed toward identifying those model characteristics (element
geometric properties, material properties and loads) that most strongly affect the required penalty
parameter, and subsequently to developing simple “formulae” for automatically calculating the
proper penalty parameter for each interface constraint. This task is especially critical in
composite materials and structures, where adjacent sub-regions may be composed of
significantly different materials or laminates. This approach has been validated by investigating a

variety of two-dimensional problems, including composite laminates.



1. INTRODUCTION

The ways in which analysis and design are performed have changed extensively during
the past decade. Automated design algorithms are now plentiful and increasingly robust, and no
longer are individual components of a structure designed in a vacuum. Facilitated in part by
product data management (PDM) and product lifecycle management (PLM) software and
internet-based data sharing, integrated design activities are now possible. Further, the speed and
economy of modern computers have enabled engineers to perform many large scale analyses that
were unheard of a decade ago. It is now common to analyze and simulate the response of entire
aircraft, spacecraft, automobiles, ships, and other structural assemblies to a variety of complex
and combined types of loading. The CPU time required to perform such analyses is very small
compared to the time required for engineers to create the mathematical and computer models,
and the latter effort is usually the most expensive component of a large scale analysis or
simulation.

With model sharing and large scale analysis activities on the rise, it is becoming evident
that improved technology for building computer models is needed. One issue that arises often is
the need to perform a unified analysis of a structural assembly using sub-structural models
created independently. These sub-structural models are frequently created by different engineers
using different software and in different geographical locations, with little or no communication
between the teams of engineers creating the models. As a result, these models are likely to be
incompatible at their interfaces, making it very difficult to combine them for a unified analysis of
the entire assembly.

Finite element interface technology has been developed during the past decade to



facilitate the joining of independently modeled substructures. Unconventional approaches have
been employed to connect special elements based on analytical solutions to finite element models
[1-2]. In [1] a near-field solution for a dynamically propagating crack at the interface of two
dissimilar anisotropic elastic materials was successfully implemented into a hybrid-displacement
finite element formulation. In [2] Lagrange multiplier terms are used to couple a special element,
based on a stress analytical solution, to standard finite elements.

In order to take advantage of parallel computing, Farhat and colleagues [3-4] developed a
domain decomposition approach for partitioning the spatial domain into a set of disconnected
subdomains, each assigned to an individual processor. Lagrange multipliers were introduced to
enforce compatibility at the interface nodes. In [5] non-conforming “mortar” elements are
employed to connect incompatible subdomains using a conjugate gradient iterative technique in a
domain decomposition scheme designed for parallel computers.

The finite element interface technology developed at NASA LaRC [6-10] and elsewhere
[11] allows the connection of independently modeled substructures with incompatible
discretization along the common boundary. This approach has matured to a point that it is now
very effective. However, because the interface technology utilizes Lagrange multipliers to
enforce the interface constraint conditions, the resulting system of equations is not positive-
definite. Hence, state-of-the-art sparse solver technology cannot be utilized with the interface
technology.

Recently, an alternative formulation for the finite element interface technology based on
Lagrange multipliers has been developed [12]. The alternative approach recasts the interface
element constraint equations in the form of multi-point constraints. This change allows an gasier

implementation of the formulation in a standard finite element code and alleviates the issues
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related to the resulting non-positive definite system of equations. The method seems to provide
reliable results, but the formulation of the interface method is still quite complicated.

A possible remedy for these shortcomings is to modify the current hybrid variational
formulation of the interface element by enforcing the interface constraints via a penalty method
as opposed to the current Lagrange multiplier approach. The primary consequences of this
modification will be (i) a simple formulation that is easily implemented in commercial finite
elements codes, (ii) a positive-definite and banded stiffness matrix and (iii) a reduced number of
DOFs, since the Lagrange multiplier degrees of freedom (DOFs) will not be present. Thus, the
proposed approach should greatly enhance the computational efficiency of the interface element
technology.

From an accuracy point of view, the penalty method enforces the constraints only
approximately, depending on the value of the penalty parameter chosen, while the Lagrange
multiplier approach enforces the constraints exactly. The penalty method interface approach was
recently attempted using a single global value of the penalty parameter to enforce all constraints
[13]. This study demonstrated the validity and the effectiveness of the penalty approach in an
interface element. However, there is need for specific guidelines regarding the selection of an
appropriate value of the penalty parameter, especially when the substructures to be connected
have different material and/or section stiffnesses.

There is a large body of literature related to the determination of an optimal value of the
penalty parameter (see, e.g. [14-26]). However, there is no existing criterion for choosing the
penalty parameter in the framework of the interface element under investigation. The
determination of such a criterion is the primary thrust of the effort presented herein.

An effective and robust interface element technology has been developed using the
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penalty method. A significant part of the effort has been directed toward identifying those model
characteristics that most strongly affect the required penalty parameter, and subsequently to
developing simple “formulae” for automatically calculating the proper penalty parameter for
each interface constraint. The new approach has been validated through a wide variety of one and
two-dimensional problems that have been investigated extensively from both an analytical and a
computational point of view. Finally, the penalty based interface element technology has been

implemented into an existing commercial code.



2. GENERAL DESCRIPTION OF THE INTERFACE ELEMENT

Consider two independently modeled subdomains €, and Q, as shown in Figure 1(a)
and 1(b), respectively, for a 2D and for a 3D geometry. The two substructures are connected to
each other using an interface element acting like “glue” at the common interface. The interface

element is discretized with a set of nodes that are independent of the nodes at the interface in
subdomains Q, and Q,. Both in the hybrid interface method and in the penalty method, the
coupling terms associated to the interface element are arranged in the form of a “stiffness” matrix

and assembled with the other finite element stiffness matrices as usual.

2.1  Hybrid Interface Method

The hybrid interface method [6-12] introduces two vectors of Lagrange multipliers 4,
and 4, in the total potential energy (TPE) of the system to satisfy the displacement continuity

conditions. Thus the TPE of the system assumes the form:

7r=7rnl+7rgz+'f21(V—ui)ds+J-AQ(V—uZ)dS Q)

The nodal displacements of the sub-domain Q; are identified by q; and q’, The
superscript o identifies the degrees of freedom (DOFs) that are not on the interfaces, while i

denotes DOFs that are on the interfaces. The displacement field u; of the sub-domain Q; is
expressed in terms of the unknown nodal displacements q', as:
u,=N,q, )

where Nj can be the matrices of linear Lagrange interpolation functions.

The displacement field ¥ is approximated on the entire interface surface in terms of
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unknown nodal displacements gy as:
V=Tgq, 3)
where 7 is a matrix of cubic spline interpolation functions [27-29].

The first variation of 7 is taken with respect to all the DOFs and the vectors of Lagrange
multipliers 4, and A,

57r| 0 €y

4. dl, 95. 4. ©. 4 A

On the interface part of the subdomains the following equations result:

w =V, A =t, A+i4=0  forj=1,2 (5)

J J J

where #; is the traction on the interface. These equations show that:
s Displacement continuity is enforced,

e A, are interface tractions,

o the total traction is zero on the interface.

The first variation of zyields the system of equations:

(KiK* 0 0 0 M ol[qg] [A)
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Tt can be seen that the resulting global stiffness matrix is sparse, symmetric, not banded and not
positive definite. Inside [K] the interface element is represented by the coupling terms Af; and Gy
which augment the stiffness matrix of the subdomains.

A “stiffness” matrix and generalized vector of unknown displacements can be associated

with the interface element, so that:
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2.2 Penalty Hybrid Interface Method

In the penalty hybrid interface method the displacement continuity constraint is imposed
in a least squares sense through two vectors of penalty parameters y, and y,. Thus the TPE of

the system assumes the form:

”=7fg,+”nz+%71 J.(V—u,)zd§+%y2 -[(V—uz)zds (8)

N N

The displacement fields #; and V are approximated in a similar way as in the original hybrid

interface method.

The first variation of 7 is taken with respect to all the DOFs, but not the vectors of

penalty parameters y, and y,, which are predetermined constants.

or @.d. 9. 4. ¢ =0 9)
We now define:

G =7, [(N] N,)ds (10)

S
Gt =7, J(N] T,)ds (n

S
6 =[o;] (12
Gl =7, J(T/T Tj)ds (13)
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So the global system of equations of the penalty hybrid interface method assumes the following

form:
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This is a symmetric, banded and positive definite (after boundary conditions are imposed) global

stiffness matrix. The “stiffness” matrix and generalized vector of unknown displacements

associated with the interface element can be defined such that:
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3. DETERMINATION OF THE PENALTY PARAMETERS

In the penalty method, the displacement continuity constraint is imposed through penalty
parameters, a set of predetermined constants. The FE solution obtained using this method is
approximate, with its accuracy depending on the value of the adopted penalty parameters. It is
known that the penalty parameter should depend on the material and/or geometric properties of
the two sub-regions being joined. Further, there is a relationship between the penalty parameter
and the Lagrange multiplier that enforces a given constraint.

The Lagrange multiplier method imposes the continuity constraint exactfy. Thus, the
Lagrange multiplier method defines the upper limit to the accuracy of the penalty method.
Knowledge of the correct solution facilitates relating the value of the penalty parameter to the
geometrical and material properties of the model under consideration. In our pursuit of the proper
penalty parameter values, a variety of one and two-dimensional problems have been studied with
both the Lagrange multiplier method and the penalty method.

The types of finite elements that have been investigated are: conventionally formulated
and reduced integrated Timoshenko beam elements, plane stress quadrilateral elements and plate
elements based on the first order shear deformation theory (FSDT), or Mindlin plate theory. For
each finite element formulation, different penalty parameters are associated to the various nodalr
DOFs. For example, the Timoshenko beam element has three independent nodal DOFs: the axial

displacement u, the transverse displacement w and the rotation y. Thus, three different penalty
parameters y,, 7, and y, are employed to enforce the interface continuity constraints on the
DOFs u, w and . An independent choice of the penalty parameters is of fundamental importance

since each degree of freedom can be related differently to the material and geometric properties
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of the finite element model.

The methodology adopted in finding the relations will now be described. First the most
common load cases for the FE type under consideration are applied separately to a simple model
of one or two elements. For example, for the Timoshenko beam element the following load cases
are considered: axial load, transversely distributed load, concentrated transverse load and
concentrated moment applied at the tip. These loads are applied to two different models: a single
beam element connected to a fixed point by one interface element (see Figure 2a), and two linear
beam elements connected using an interface element and clamped at the tip (see Figure 2b).

The formulations and solutions are obtained using both the Lagrange multiplier method
and the penalty method. The Aisplacement solutions from the two methods are compared
individually for each degree of freedom. The ratio between the two solutions is expressed in the

form:

penalty
S f (16)
Y

Lagrange
U Rrang

where f = f(element geometric properties, material properties, and loads)
Once this simple expression has been identified, the penalty parameter y is set equal to:

y=8f (17
Then, the ratio between the solutions becomes independent of material and geometrical

properties of the element:

enalty
u 1

ul,agrange ﬂ

The accuracy of the solution depends directly on the value assigned to the parameter p. For
example, if S is equal to 1000, the penalty solution differs from that obtained by use of the
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Lagrange multipliers by 0.1%. The degree of precision of the solution cannot be indefinitely
increased, since round off amplification error would rise. However, once a reasonable
compromise between constraint representation error and the round off error has been evaluated, a
value of 4 can be identified that is able to produce the same level of accuracy for every
combination of material and geometrical properties.

In some cases, however, the displacement solution related to a particular DOF depends on
the penalty parameter used to enforce a different DOF. An example of this situation is

represented by the following relations:

penally
ullagrmrge =1+ A + —é (1 9)
Uy i 1
penalty
=1+ (20)
U V2

where u, and u, are displacement solutions computed at the same node for two different DOFs,
while f,, f, and f, are independent functions of the model properties and the loads.

Two possible options are available in this situation. The first option is to choose
¥, =2/, and y, =2, in order to obtain the desired simple relation between the solution ratio

and £ only for the DOF 1.

penalty penally
u]‘T——=1+L+—1—=1+—1— ufamc— + /s QD
uy 28 28 I uy " 281,
The other option is to set y, =287, and y, = B f;, favoring a simple relation for the DOF 2.
u penalty 1 f u penaliy 1
I‘xlgrange = 1 toot = l,zagrmlgc =1+— (22)
Y 28 Bf U, B

Clearly a conflict arises about the value of the penalty parameter y,. A reasonable way to
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address this issue is to compare the two possible values for y, and to choose the greater. Thus,
the accuracy for one DOF is directly proportional to S as desired, and the precision of the other
one should be slightly higher.

As discussed previously, one of the main objectives of this study is to establish an
automatic choice of the optimal penalty parameter. The investigations of the ratio between the
solutions based on Lagrange multipliers and the penalty method constitute the basis for pursuing
this goal. Nevertheless, it should be underlined that an exact value of the penalty parameter is not
required. Rather, a value that is of the right order of magnitude is sufficient. In fact, even in the
most complex FE analysis, there exists a range of values for this parameter for which the
numerical outcomes change very little. This range can equal as much as 12 orders of magnitude

for simple analyses, but usually is not less than two orders of magnitude in most situations.

3.1 Computational Example —Beam Under Uniaxial Load

In order to limit the length and the complexity of the mathematical derivation, the
example described here is one of the simplest available: the extension of a beam under a uniform
load P applied at the tip. This case is analyzed using a single linear beam element connected to
one fixed point ¥ by a displacement continuity constraint, which is imposed through a Lagrange
multiplier or a penalty parameter. The configuration of the geometry and the mesh is plotted in

Figure 2a.

3.1.1 Lagrange Multiplier Method

The hybrid interface method introduces a Lagrange multiplier 4, in the total potential

energy (TPE) of the system to satisfy the displacement continuity condition. Thus the TPE of the
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system in this study assumes the following form.
r=m+ A (v-u)-r-v (23)
where 7, is the TPE of the bar;  and v are, respectively, the reaction force and the

displacement at point V. Expanding and simplifying:

7z=I%(O'x-gx)dV—Zf,-uﬁ/ll-(v—u])—rl-v (24)

|4

L

%[ (Zz:]dx Zf w+ A (v—u)-r- (25)

0

where E is the Young’s modulus, 4 is the cross sectional arca and f; are the applied nodal forces.

If the displacements are approximated linearly by:

u=YuN, =1 (1—%)“42 ({-) (26)

x takes the following form.

7[=—E£-L(2u,%](2u,fl—"]dx—ﬂuz+ﬂ.,~(v—u,)—r]-v 27)

20" dx i

Setting to zero the first variation of 7, taken with respect all the DOF's, produces the following

equations.
%:EA'E(%J(;“'%]&% =0 (28)
%:EAJ{"Q’;](;W%]@—P:() (29)
%’u& —5=0 (30)
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—=v-u =0 31
o | (1)
Thus, the resulting FE model is:
[ EA EA ]
—_ —— -1
L L w| |0
_E E‘i 0 Hi_ P (32)
L L v[ n
0 0 0 1 y) 0
-1 0 0]

Since Vis fixed, v = 0, and the solution is found to be:

n=7X4=-P (33)

u=v=_0 (34)
PL

ty = (35)

The solution provided by the hybrid interface method coincides with the exact theoretical one.

3.1.2 Penalty Method

In the penalty method the displacement continuity constraint is imposed through a

penalty parameter ,. Therefore the TPE of the system takes the form:

7r=7z]+~;-7,-(v—u])2—r;-v (36)
1 2 1
zt=IE(Jx-gx)dV—Z]:f,-u,+5y,-(v—u,)z—r,-v (37)
v i=
15 () | 3 1
EZE.JEA(Z:J dx—gf,-u,,+—2—y,-(v—u,)2—rl~v (38)

Approximating the displacements linearly:
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i’ . dN,
— I( i u,%][;u’, abc")dx—P-uz+%;/1-(v—u])2—rl -y

The first variation of 7 in this case is taken with respect all the DOFs, but not the penalty

parameter.

or
—= v—u)-rn=0
v e ( ) 1
The resulting FE model is:
EA EA y |
B T T T, TN
L L u, 0
FA EA
—_— _— O u2 =
L L
v K
~N 0 N ]
Solving the system of equations:
n=-p
P
uy =—
4

uz:[L+L)p
n E4

3.1.3 Comparison Between the Two Methods

(39)

(40)

(41)

)

(43)

(44)

(45)

(46)

When the penalty parameter approaches infinity, the penalty method solution tends to the

one obtained using the Lagrange multiplier method.
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Limitu, = Limil-I: =0 47)

}’]'—)CD }/!—)w 7/1
Limitu, = Limit 1 + L P= (—L~) P (48)
o n= \y, EA EA
Moreover, the constraint that has been enforced is:
C, (u,u,v)=(v—u,) (49)

If we define u,,,u,,,v, as the solutions derived from the penalty formulation, it is possible to

verify the well-known relation between the Lagrange multiplier and the penalty parameter.

A=Y -Cl(u,y,uzy,vr)=;/1 '(vy—u]y)=yl -[0——}]/—){| =-P (50)
1

3.1.4 Relation Between Penalty Parameter and Beam Properties

The exact displacement of the tip of the beam matches that from the Lagrange multiplier

finite element formulation.

exact L
llZ' = a P (5 1 )

The Penalty parameter solution /" differs from the exact one by the presence of an additional

term (P/y,):

uzpenally - L_{_ _L P (52)
v, EA

The ratio u!™™/uf™" is evaluated in order to identify the relationship between the two

solutions:
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1 L
penalty —+ ;J P
U, _ V4 EA —1

exac =1+ (53)
U, / ( “L_ j J2 4
FEA
The penalty parameter y, is now substituted by:
FA
n=pg (—L—j (54)

It follows that the ratio between the solutions becomes independent of material and geometrical

properties of the beam.

penally 1
b =14 — (55)
U, B

A similar procedure is followed for the two-dimensional and three dimensional problems
of any kind. Details are omitted for brevity. But the final results of this investigation are
presented in the appendix for selected element types.

A common approach is to set the penalty parameter equal to the largest diagonal term in
the stiffness matrix multiplied by a factor 107, where n is a preselected integer value. For the
simple example above, Eq. (54) yields an equivalent result. However, in general the approach
developed here in yields expressions that are not directly proportional to coefficients in the

stiffness matrix.

3.2 Automatic Round-Off Error Control

Due to finite precision in floating-point arithmetic used when the interface element
stiffness matrix is numerically integrated, the stiffness coefficients are always approximated.

However, in order to be imposed correctly (and to contribute no energy to the system), the

18



displacement continuity constraint (V—u) requires the sum of the terms in every row of its

stiffness matrix (15) to be zero. This condition usually cannot be achieved, due to the round-off
error, and the resulting inaccuracy grows with the value of the penalty parameter. Precisely, the
important measure is the ratio between the order of magnitude of the interface element stiffness

matrix rows’ imbalance and the element stiffness. If K, is the stiffness associated to the n-th

nodal DOF, it is sufficient to consider the ratio:
Q,=—+ (56)

ent stiffness matrix row related to the DOF ».

where ER, is the unbalance in the interface el

ER, =) K, (57)
J

When the value of Q, exceeds about 1-10™, errors in the solution may become
appreciable. The discussed row imbalance is proportional to the value of the penalty
parameter, ER, oc y . It is also approximately true that:

ER,wy«f-K, = 0,<p (58)

Accordingly, an algorithm has been developed to control the round-off error. Its steps can
be summarized as follows:

e Stiffness terms for every nodal DOF in the interface element are computed from known
geometrical and material properties.

e For each row in the stiffness matrix:
o The highest stiffness term is selected and assigned to a variable K

o The row imbalance of the stiffness matrix is stored in a variable ER
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o Q= ER is evaluated
K
e The highest Q found is compared to a given constant value C. Typically C = 1 107 is used.

e If 0> C, the parameter f is reduced according to: ™" = c. y/j

Q

Hew

o The interface element stiffness matrix is recalculated using the new value g = 8"".

This approach reduces the risk that round-off errors could adversely affect the solution.
Thus, the initial value of £ can be increased, in order to get a higher degree of accuracy,
knowing that it will be automatically reduced if rounding errors don’t allow that precision to be

realized.

3.3 Implementation of the Model as an Abaqus User Element Subroutine

To test the behavior of the penalty method based “interface” element and the accuracy of
the obtained relations for an automatic choice of the penalty parameters, the element has been
implemented in the commercial finite element code ABAQUS as a User Element Subroutine
(UEL) [30].

The UEL subroutine receives all the necessary information about geometry and material
properties of the two connected meshes of finite elements from the input file. Then, the stiffness

matrix of the interface element is built as previously defined:

G -GF 0
-G G"+GF -G (60)
0o -GF G’

The appropriate values of penalty parameters for each constraint are assigned automatically

inside the subroutine.
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4. NUMERICAL RESULTS

4.1 Isotropic 2D Cantilever Beam with a Vertical Interface

A two dimensional cantilever beam is assumed to be composed of two domains. The
domains are meshed independently and joined by one interface element. The geometrical and
load configuration of the problem are represented in Figure 3. Others properties are: P =1,
Q=1, E, =E, =1 and thickness =1.

Only one interface element is adopted in this simple case, since more would not improve
the solution accuracy. This element is identified by the vertical interface that contains the three
DOFs V,, V, and V,. In discretizing the two subdomains, four-noded bilinear plane stress
elements are used. Two different load conditions are investigated: axial and bending loads. This

problem may be considered a patch test for the element developed herein.

41.1 Axial Load

Under the condition of a uniformly distributed axial load applied at the free end of the
beam, the interface element results are in agreement with the exact solution to the number of
significant digits available. Results from two different beam discretizations are reported in Table

1.

It is important to study the stability of the solution obtained by the new method for
various values of the nondimensionalized penalty parameter y/E . For this test the automatic
choice of the optimal parameter y was temporarily disabled. Results are produced in graphical
form in Figure 4. It can be observed that the solution is stable for a wide range of values of the

nondimensionalized penalty parameter y/ E .
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4.1.2 Bending Load

For the bending load case, a comparison is made to both the classical beam solution and a
reference finite element solution. The coarse mesh of bilinear quadrilateral elements cannot
exactly recover the classical solution. In Table 2 are results obtained from two different beam
discretizations. The FE results, marked as Abaqus, are obtained from a traditional analysis using
a compatible finite element model of the beam.

The stability of the solution obtained is tested also in this load case for various values of
the nondimensionalized penalty parameter y/E. Again the automatic choice of the optimal
parameter y was temporarily disabled. Results are produced in graphical form in Figure 5. The

method proves very reliable and stable for bending loads.

4.2  Tension-Loaded Plate with a Central Circular Hole

A plate with a central circular hole is subjected to a uniform load at its edges. This well
studied elasticity problem allows one to investigate the capability of the interface elements in
performing global/local analysis. Geometrical and load configurations are plotted in Figure 6.
The plate height and width are, respectively, #=100 and »=200; the radius of the hole is
r =2.5; the distance of the interface from the center of the hole is 5.

Taking advantage of symmetry, only one quarter of the plate is modeled. A fine mesh is
applied in the area between the hole and the interface, while a much coarser mesh is adopted
elsewhere. The complete finite element model is reported in Figure 7a. For a better view, the area
near the hole is depicted in Figure 8a. The elements used to mesh the two domains are plane
stress bilinear quadrilaterals, Abaqus CPS4. Five interface elements are employed along each

segment of the interface for a total of 11 interface nodes.
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Figures 9a and 10a demonstrate that only light discontinuities in the values of stresses at
the interface are present. Horizontal and vertical displacements do not show any change in their
values across the interface, as plotted in Figures 11a and 12a.

In order to compare the previous maps of stresses and displacements, a conventional FE

model has been built with Abaqus. Figures 7b and 8b show the adopted mesh. Stresses oy, , 05,

and displacements U, and U, are provided in Figures 9b to 12b. Comparing the maps of the
displacements, it can be noticed that the interface elements do not introduce any discontinuities
at the interface. The distribution of the stresses shows small differences, but they can still be
considered sufficiently accurate.

The elasticity solution for an infinite plate with a central hole loaded in uniform tension
predicts that the stress concentration factor, K|, is equal to 3.0 at the upper edge of the hole.

Moreover, it provides the equation for evaluating the change in o,, along the line axis X,.

Using this expression, we computed the stress variation along X, for our geometrical
configuration and compared this result with our FE models. Figure 13 graphs the exact elasticity
solution against the penalty interface and the conventional FE ones. The results are all very close,

validating the precision of the developed method.

4.3 Composite 2D Cantilever Beam with a Vertical Interface

A 2D composite cantilever beam made of five materials is considered. The geometrical
and loading configurations are the same as for the cantilever beam analyzed previously (see
Figure 14). The entire left domain of the beam is made of one isotropic material having a

Young's modulus equal to 2.9E+7 MPa and Poisson’s ratio 0.25. The right domain is composed
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of four isotropic layers of equal thickness. They have all the same Poisson ratio 0.25, but the
Young’s modulus E varies. Starting from the bottom, the layerwise E takes the values: 1E+6
MPa, 1E+7 MPa, SE+6 MPa and 1E+8 MPa. A conventional finite element model (10x4-10x4)
has been used as a baseline to test the results from the penalty interface method.

Under these conditions the interface is expected to undergo abrupt changes of slope. An
important property of the interface elements is the automatic choice of the penalty parameters. In
fact, the interface elements can join the four different layers to the left domain with the dissimilar
stiffness. This behavior can increase the accuracy of the results, avoiding the possible corrupting
effect of an overestimated penalty parameter.

The results are shown for two possible interface discretizations: 1 interface element and 4
interface elements. Axial and vertical displacements at the free end of the beam under axial load
are plotted in Figures 15 and 16. Similarly, deflections for transversal load case displacements at
the free end of the beam are reported in Figures 17 and 18.

Displacements from the interface element model compare very well to those from the
conventional finite element model. Only in the transversal load case, a single interface element

appears to slightly overestimate the vertical displacements.

4.4  Clamped-Clamped Asymmetric Beam

In this section an asymmetric beam, clamped at both ends, is loaded with two
concentrated loads applied at two different points of the mesh. This problem was studied in
[4,13] to validate the proposed interface method. The geometry of the problem and the position
of the two concentrated loads are shown in Figure 19.

The beam is meshed using two domains with different material properties. The ratio of
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the Young’s modulus in the domains a and b is 0.2. The domain a is discretized with an 8 by 8
mesh; two different meshes are adopted for the domain 4. The mesh used for the conventional FE
analysis is set to be 8 by 8, so that at the interface there is the same number of nodes. A different
mesh is needed for discretizing domain & in order to test the interface model’s capabilities. An 8
by 12 mesh has been chosen. The two forces, having the same magnitude F=1 but different
directions, produce a complex state of deformation with strong stress concentrations at the
interface that can challenge the interface element.

Figures 20 and 21 compare the deformed configuration, produced by a conventional
FEM, with that obtained using a FEM with four interface elements at the interface. No visible
differences can be observed.

The test is completed by a comparison between the in-plane displacements u and v along
the interface as shown in Figures 22 and 23. The four interface elements connect two interfaces
with a different number of nodes. Both displacement components are in satisfactory agreement

with the conventional analysis.

4.5  Simply Supported Plate Under Sinusoidal Load

A simply supported plate is subjected to a transverse load distributed over the surface

according to the following expression:

q=q, sin 2> sin 22 (61)
a b

In which g, represents the intensity of the load at the center of the plate. a and b are the plate
dimensions, respectively, in the in-plane directions x and y.

We assume the plate to be square with equal side dimensions, @ = b =2 . The value of g,
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is taken to be 1. Taking advantage of geometrical and loading symmetries, only a quarter of the
plate is analyzed. As shown in Figure 24, a fine mesh is used for a square near the center, while
the remaining surface adopts a coarse mesh. The four noded Abaqus shell element S4R is
employed to mesh both domains. Two interface elements on each edge are used to connect the
two domains. Others properties are: E, = E, =1e6, v = 0.25 and thickness = 0.1. Figure 25 plots
deformed and undeformed configurations of the plate as seen from the bottom.

A classical plate solution to this problem exists in the literature. In Figure 26, the
transverse displacements w along x at y = 1 are reported. Even in the presence of a high gradient
of deformation, the model behaves well. This further confirms our confidence that the developed

method is both robust and accurate.

27



5. CONCLUSIONS

In the present work, an effective and robust interface element technology has been
developed using the penalty method. This approach overcomes the numerical difficulties
associated with the existing methods based on Lagrange multipliers. Additionally, the present
formulation leads to a computational approach that is very efficient and completely compatible
with existing commercial software. Significant effort has been directed toward identifying those
model characteristics (element geometric properties, material properties and loads) that most
strongly affect the required penalty parameter, and subsequently to developing simple
“formulae” for automatically calculating the proper penalty parameter for each interface
constraint. A wide variety of one and two-dimensional problems has been investigated
analytically and computationally in order to correctly identify the analytical functional form of
the penalty parameter for each constraint within many classes of problems.

The resulting interface element is particularly efficient for finite element modeling of
composite structures. When the material properties vary across and/or along the interface, the
present method is often much more accurate than adopting a unique value of the penalty
parameter.

The present interface element has been implemented in the commercial finite element
code ABAQUS as a User Element Subroutine (UEL), making it convenient to test the behavior
and accuracy of the interface element for a wide range of problems. This approach has been
validated by investigating a variety of two-dimensional problems, including composite

laminates.
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APPENDIX

The types of finite elements that have been investigated are: conventionally formulated
and reduced integrated Timoshenko beam elements, plane stress quadrilateral elements and plate
elements based on the first order shear deformation theory (FSDT), or Mindlin plate theory. For
cach finite element formulation, different relations between penalty parameters and model
characteristics (element geometric properties, material properties and loads) have been found.

Results of this investigation are briefly presented in this appendix.

Reduced integrated Timoshenko beam element

Consider the problem of two linear reduced integrated Timoshenko beams connected
through an interface element. The interface node is identified as 7, the last node of the first beam
is identified as 1 and the first node of the second beam is identified as 2. The Timoshenko beam

element has three independent nodal DOFs: the axial displacement u, the transverse displacement

w and the rotation . Thus, three different penalty parameters y,, 7, and y, are employed to

enforce the interface continuity constraints on the DOFs u, w and . In Table A1 are defined the
penalty parameters to be associated with each of the constraints.

Results obtained in our research lead us to affirm that the penalty parameters should be
related to model characteristics as shown in Table A2. Where two values are present for the same
DOF the bigger is chosen. Moreover, the subscript 1 and 2 marks, respectively, the material and

geometrical properties belonging to the first and to the second beam.

Plane stress quadrilateral elements

As for the Timoshenko beam case, consider the problem of two plane stress quadrilateral
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elements connected through an interface element. The generic node on the left of the interface is
named 1, while the one on the right is named 2. Each node has two DOFs: the in-plane
displacements u and v. Under conditions of axial load (load perpendicular to the interface

surface), the following expression for the penalty parameter has been derived:

yk:ﬂ-(—E“t"J k=1,2

a
Where % and ay, are, respectively, the thickness and the width of the KM element.

This expression is very simple, but still contains information that would be difficult to
obtain, namely: the width of the element, a. Inside the UEL subroutine only the coordinates of
the nodes on the interface are known. Thus, assuming good modeling practice in FE of using
clements with aspect ratio close to unity, we choose to approximate the dimension in the

direction perpendicular to the interface with the one parallel to it. According to the adopted

symbols, the expression for y, becomes:

or(5)

This simplification strongly affects the expression obtained for the flexural load case

(load parallel to the interface surface), which is modified in the following way:

a: +2b E, ¢ ~ E t
=38 (k ;) kzk Ah sy = f|
4a, (2a; +b; ) 4b,

A final step is required in order to obtain a single expression for an automatic evaluation

of the penalty parameter. It consists in eliminating the scalar 4 from the denominator of the last
expression for y, . This simplification is important since the interface could have any orientation,

so it is better to not make any distinction between horizontal and vertical displacement DOFs. In
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conclusion, only two penalty parameters are needed: y, for both the DOFs u and v of the nodes

on the left of the interface, y, for the ones on the right of the interface.
_g.| B4 _g.| B
n=p [ b J =8 ( b,

Plate elements

In plate elements each node has six DOFs: the in-plane displacements u and v, the
transverse displacement w and the rotational DOFs (4,, 6,, 8,). The in-plane, transversal and
rotational DOFs require different penalty parameters for optimal behavior. In particular: one, y,,
is assigned to the in-plane DOFs (u, v), the second, 7, , to the transverse DOF w and the third,
¥,, is shared by all the rotational DOFs (6,, 6,, 6,). The constraints are associated to the

expression for computing the penalty parameters as in Table A3.
Results obtained using the presented method have been simplified as for the plane stress
quadrilateral element by approximating the element dimension in the direction perpendicular to

the interface with the one parallel to it. The simplified relations are shown in Table A4.
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Table 1. Tip axial displacement numerical results for beam extension.

Mesh Solution
Abaqus 20x8 4.000
Abaqus with interface Element 10x8 Left / 10x2 Right 4.000
10x8 Left / 10x4 Right 4.000
Classical - 4.000
Table 2. Tip deflection numerical results for beam flexure.
Mesh Solution
Abaqus 20x2 258.800
20x4 260.000
20x8 260.400
Abaqus with interface Element 10x8 Left / 10x2 Right 259.500
10x8 Left / 10x4 Right 10x8 261.100
10x8 Left / 10x8 Right 260.400
Classical - 265.6
Table Al. Penalty parameters associated with each of the constraints enforced in the Timoshenko
beam element.
Penalty parameter Constraint enforced
yul (ui - Z'll )
}/wl (W,— - w] )
}/y/] (\.IJ’ - \Pl)
yuZ (ui - u2)
wa (wi - WZ)
Vo2 (lPi - \PZ)
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Table A2. Expression for computing the penalty parameters in a Tinoshenko beam element.
Axial load Moment Transverse load applied | Transversely Distributed
applied at the at the tip Load
tip
E]A]
yul ﬂ ( L] ]
2 2
ﬂ' 3 ﬂ 4 Ll 2
}/wl - - L‘ + L] L' 4 e L]
4E1, kAG, 8E I, 2k AG,
2 2 2 3
P T
2E] +—1— ( L+ J
Yo - ﬂ———L] 4E1, kAG, 4EI, Kk AG,
or ﬂ-ﬂl—' or ,B~——2E‘]'
L L
| B4 . - -
yuZ ﬂ ( L2 j
2 2L
ﬁ 3 ﬂ 4 2 2
Vw2 - - L L, L, 3 L
4E,I, Kk A4,G, 8E,I, 2k,A,G,
2L 2L
B 3 L B 4 : 2
L L, L, L
2E212 + +
Yy2 - B =y 4E,I, k4G, 4E,I, k,A4,G,
2
or B E,I, or B 2E,1,
L, L,
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Table A3. Penalty parameters associated with each of the constraints enforced in a Mindlin plate

element.
Penalty parameter Constraint enforced
Yo (v, —u,)
£ (vi—w)
Y 7 (W,- — W, )
Yo (0,_ -0, )
Y2 (Zl‘. — uz)
Vw2 (v, -v,)
Vw2 (w,—w,)
Yoy (6,-6)
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Table A4.

Expression for computing the penalty parameters in a Mindlin plate element.

All kind of loads
Et
Ve ﬂ{—u)
1 bl
Et
Y. IB . (_IL)
1 bl
2
, 4 4b] L]
" E!t: leltl
25}
B ( ™ i _Lj
Yo Ex k3|G|’|
tl El
or f-+—
p 6
Et
}/" ﬂ . [__22_]
2 b2
Et
2
7w2 ﬂ 4b; 1
EZI; k2G2ll
262
o ’(41;; L] j
Yoo £t k;Gz’z
IZEZ
Or PR
A 6
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(b)
Figure 1. (a) 2D and (b) 3D Interface element configurations.
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Figure 2. (a) Beam element connected to a fixed point V by one

interface element; (b) two linear beam elements connected in
V using an interface element and clamped at one tip.
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Figure 3. 2D- Cantilever beam with vertical interface.
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Figure 4. Stability of the solution for different values of y - axial load.
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Figure 6. Tension-loaded plate with a central circular hole (not to
scale).
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(a)

z 1
(b)

Figure 7. (a) Interface element and (b) conventional FE mesh.
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(b)
Figure 9. (a) Interface element and (b) conventional FE solution -
stress distribution in the direction 1 (o).
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(b)
Figure 10. (a) Interface element and (b) conventional FE solution -
stress distribution in the direction 2 (c,,).
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(b)

Figure 11. (a) Interface element and (b) conventional FE solution -

horizontal displacement distribution (U,).
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Figure 12. (a) Interface element and (b) conventional FE solution -
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vertical displacement distribution (U,).
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